Quantcast
Channel: Forums - Recent Threads
Viewing all articles
Browse latest Browse all 262198

CCS/TMS320F28027: ADC 28027

$
0
0

Part Number:TMS320F28027

Tool/software: Code Composer Studio

hi,

i want to vary the amplitude of sine by varying the input of the adc .i am having problem in configuring adc. when i am supplying 3.3 volts to the ADCINA4  pin i am getting wrong values .i am running the code using flash file.please help me if any one knows the solution .

//###########################################################################
//
// FILE: Example_2802xAdcSoc.c
//
// TITLE: f2802x ADC Start-Of-Conversion (SOC) Example Program.
//
// ASSUMPTIONS:
//
// This program requires the f2802x header files.
//
// Make sure the CPU clock speed is properly defined in
// f2802x_Examples.h before compiling this example.
//
// Connect signals to be converted to A2 and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2802x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table
// While an emulator is connected to your device, the TRSTn pin = 1,
// which sets the device into EMU_BOOT boot mode. In this mode, the
// peripheral boot modes are as follows:
//
// Boot Mode: EMU_KEY EMU_BMODE
// (0xD00) (0xD01)
// ---------------------------------------
// Wait !=0x55AA X
// I/O 0x55AA 0x0000
// SCI 0x55AA 0x0001
// Wait 0x55AA 0x0002
// Get_Mode 0x55AA 0x0003
// SPI 0x55AA 0x0004
// I2C 0x55AA 0x0005
// OTP 0x55AA 0x0006
// Wait 0x55AA 0x0007
// Wait 0x55AA 0x0008
// SARAM 0x55AA 0x000A <-- "Boot to SARAM"
// Flash 0x55AA 0x000B
// Wait 0x55AA Other
//
// Write EMU_KEY to 0xD00 and EMU_BMODE to 0xD01 via the debugger
// according to the Boot Mode Table above. Build/Load project,
// Reset the device, and Run example
//
// $End_Boot_Table
//
//
// DESCRIPTION:
//
// This example sets up the PLL in x12/2 mode.
//
// For 60 MHz devices (default)
// (assuming a 10Mhz input clock).
//
// Interrupts are enabled and the ePWM1 is setup to generate a periodic
// ADC SOC - ADCINT1. Two channels are converted, ADCINA4 and ADCINA2.
//
// Watch Variables:
//
// Voltage1[10] Last 10 ADCRESULT0 values
// Voltage2[10] Last 10 ADCRESULT1 values
// ConversionCount Current result number 0-9
// LoopCount Idle loop counter
//
//
//###########################################################################
// $TI Release: F2802x Support Library v230 $
// $Release Date: Fri May 8 07:43:05 CDT 2015 $
// $Copyright: Copyright (C) 2008-2015 Texas Instruments Incorporated -
// http://www.ti.com/ ALL RIGHTS RESERVED $
//###########################################################################

#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "math.h"
#include"Gpio.h"

void InitEPwm1Example(void);
// Prototype statements for functions found within this file.
__interrupt void epwm1_isr(void);
__interrupt void epwm2_isr(void);
__interrupt void epwm3_isr(void);
__interrupt void adc_isr(void);
void Adc_Config(void);

// Global variables used in this example:
unsigned int r,y,b;
uint16_t LoopCount;

uint16_t k1;
uint16_t k2;
uint16_t k3;

float ipcb1[300];
float ipcb2[300];
float ipcb3[300];

#define PRD 4000
#define PI 3.14159265358979323846
extern uint16_t RamfuncsLoadStart;
extern uint16_t RamfuncsLoadSize;
extern uint16_t RamfuncsRunStart;

float main(void)

{
// WARNING: Always ensure you call memcpy before running any functions from RAM
// InitSysCtrl includes a call to a RAM based function and without a call to
// memcpy first, the processor will go "into the weeds"
#ifdef _FLASH
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);
#endif

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the f2802x_SysCtrl.c file.
InitSysCtrl();

// Step 2. Initialize GPIO:
// This example function is found in the f2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the f2802x_PieCtrl.c file.
InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in f2802x_DefaultIsr.c.
// This function is found in f2802x_PieVect.c.
InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected register
PieVectTable.ADCINT1 = &adc_isr;
PieVectTable.EPWM1_INT = &epwm1_isr;
PieVectTable.EPWM2_INT = &epwm2_isr;
PieVectTable.EPWM3_INT = &epwm3_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);
// Step 4. Initialize all the Device Peripherals:
InitAdc(); // For this example, init the ADC
AdcOffsetSelfCal();

// Step 5. User specific code, enable interrupts:
// Enable ADCINT1 in PIE
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
InitEPwm1Example();
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;

PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
PieCtrlRegs.PIEIER1.bit.INTx1 = 1; // Enable INT 1.1 in the PIE
IER |= M_INT1; // Enable CPU Interrupt 1
IER |= M_INT3;
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM

LoopCount = 0;

// Configure ADC
//Note: Channel ADCINA4 will be double sampled to workaround the ADC 1st sample issue for rev0 silicon errata
EALLOW;
AdcRegs.ADCCTL1.bit.INTPULSEPOS = 1; //ADCINT1 trips after AdcResults latch
AdcRegs.INTSEL1N2.bit.INT1E = 1; //Enabled ADCINT1
AdcRegs.INTSEL1N2.bit.INT1CONT = 0; //Disable ADCINT1 Continuous mode
AdcRegs.INTSEL1N2.bit.INT1SEL = 2; //setup EOC2 to trigger ADCINT1 to fire
AdcRegs.ADCSOC1CTL.bit.CHSEL = 4; //set SOC0 channel select to ADCINA4
AdcRegs.ADCSOC2CTL.bit.CHSEL = 4; //set SOC1 channel select to ADCINA4
AdcRegs.ADCSOC3CTL.bit.CHSEL = 2; //set SOC1 channel select to ADCINA2
AdcRegs.ADCSOC1CTL.bit.TRIGSEL = 0xB; //set SOC0 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC2CTL.bit.TRIGSEL = 0xB; //set SOC1 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1
AdcRegs.ADCSOC3CTL.bit.TRIGSEL = 0xB; //set SOC2 start trigger on EPWM1A, due to round-robin SOC0 converts first then SOC1, then SOC2
AdcRegs.ADCSOC1CTL.bit.ACQPS = 6; //set SOC0 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC2CTL.bit.ACQPS = 6; //set SOC1 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
AdcRegs.ADCSOC3CTL.bit.ACQPS = 6; //set SOC2 S/H Window to 7 ADC Clock Cycles, (6 ACQPS plus 1)
EDIS;

// Assumes ePWM1 clock is already enabled in InitSysCtrl();
EPwm4Regs.ETSEL.bit.SOCAEN = 1; // Enable SOC on A group
EPwm4Regs.ETSEL.bit.SOCASEL = 4; // Select SOC from from CPMA on upcount
EPwm4Regs.ETPS.bit.SOCAPRD = 1; // Generate pulse on 1st event
EPwm4Regs.CMPA.half.CMPA = 0x0080; // Set compare A value
EPwm4Regs.TBPRD = 0xFFFF; // Set period for ePWM1
EPwm4Regs.TBCTL.bit.CTRMODE = 0; // count up and start


// Wait for ADC interrupt
for(;;)
{
LoopCount++;
}

}
__interrupt void adc_isr(void)
{
k1 = AdcResult.ADCRESULT1; //discard ADCRESULT0 as part of the workaround to the 1st sample errata for rev0
k2 = AdcResult.ADCRESULT2;
k3 = AdcResult.ADCRESULT3;

AdcRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //Clear ADCINT1 flag reinitialize for next SOC
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; // Acknowledge interrupt to PIE

return;
}
__interrupt void epwm1_isr(void)
{

for(r=0;r<300;r++)
{
ipcb1[r] = k1*sin(2*0.00333*PI*r);

EPwm1Regs.CMPA.half.CMPA = ipcb1[r];

if(((EPwm1Regs.TBCTR-(PRD/2))*2)>(ipcb1[r])) // Set actions
{
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;
}
else
{
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm1Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm1Regs.AQCTLB.bit.CAU = AQ_SET;
EPwm1Regs.AQCTLB.bit.CAD = AQ_CLEAR;
}
if (r==301){
r=0;
}
}

// Clear INT flag for this timer
EPwm1Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

__interrupt void epwm2_isr(void)
{
for(y=0;y<300;y++)
{
ipcb2[y] = k2*sin((2*0.00333*PI*y)+2.09439);

EPwm2Regs.CMPA.half.CMPA = ipcb2[y];

// Set actions
if(((EPwm2Regs.TBCTR-(PRD/2))*2)>(ipcb2[y]))
{
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on CAU
EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR; // Clear PWM2A on CAD
EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.CAD = AQ_SET;
}
else
{
EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm2Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm2Regs.AQCTLB.bit.CAU = AQ_SET;
EPwm2Regs.AQCTLB.bit.CAD = AQ_CLEAR;
}
if (y==301){
y=0;
}
}

// Clear INT flag for this timer
EPwm2Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}

__interrupt void epwm3_isr(void)
{
for(b=0;b<300;b++)
{
ipcb3[b] =k3*sin((2*PI*0.00333*b)-2.09439) ;

EPwm3Regs.CMPA.half.CMPA = ipcb3[b];

if(((EPwm3Regs.TBCTR-(PRD/2))*2)>(ipcb3[b])) // Set actions
{
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.CAD = AQ_SET;
}
else
{
EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm3Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm3Regs.AQCTLB.bit.CAU = AQ_SET;
EPwm3Regs.AQCTLB.bit.CAD = AQ_CLEAR;
}
if (b==301){
b=0;
}


// Clear INT flag for this timer
EPwm3Regs.ETCLR.bit.INT = 1;

// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
}
void InitEPwm1Example(void)
{
EALLOW;

GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 1; // GPIO ³õʼ»¯ÎªepwmÊä³ö
GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO4 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 1;

EDIS;

EPwm1Regs.TBPRD = PRD; // Set timer period
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm1Regs.TBCTR = 0x0000; // Clear counter
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;

EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // Load registers every ZERO
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;

// Active Low PWMs - Setup Deadband
EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;
EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm1Regs.DBRED = 270;
EPwm1Regs.DBFED = 270;

// Interrupt where we will change the Deadband
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event


EPwm2Regs.TBPRD = PRD; // Set timer period
EPwm2Regs.TBPHS.half.TBPHS = 0x0535; // Phase is 0
EPwm2Regs.TBCTR = 0x0000; // Clear counter
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Disable phase loading
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Slow just to observe on the scope

// Active Low complementary PWMs - setup the deadband
EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;
EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm2Regs.DBRED = 270;
EPwm2Regs.DBFED = 270;

// Interrupt where we will modify the deadband
EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm2Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event

EPwm3Regs.TBPRD = PRD; // Set timer period
EPwm3Regs.TBPHS.half.TBPHS = 0xA6A; // Phase is 0
EPwm3Regs.TBCTR = 0x0000; // Clear counter
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Disable phase loading
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1; // Slow so we can observe on the scope

// Active high complementary PWMs - Setup the deadband
EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;
EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm3Regs.DBRED = 270;
EPwm3Regs.DBFED = 270;

// Interrupt where we will change the deadband
EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm3Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event
}


Viewing all articles
Browse latest Browse all 262198

Trending Articles