Part Number:TMS320C6748
Tool/software: Code Composer Studio
Hi,
I am developing an audio processor using the LCDK and am currently attempting to implement an echo effect within my system. I am using the McASP Staterware example as a barebones code and adding my own code on top of it. I have successfully implemented an echo effect through the use of arrays, by storing previous rxBuf values and replaying them after a given period.
My problem is, that the rxBuf data contains a noticeable amount of noise. The noise seems to arise when copying the buffer values to a variable (for manipulation) and back again. Could anyone advise me on how to either remove the noise, or how to manipulate the buffer data more cleanly.
/** * \file mcaspPlayBk.c * * \brief Sample application for McASP. This application loops back the input * at LINE_IN of the EVM to the LINE_OUT of the EVM. */ /* * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "edma_event.h" #include "interrupt.h" #include "soc_C6748.h" #include "hw_syscfg0_C6748.h" #include "lcdkC6748.h" #include "codecif.h" #include "mcasp.h" #include "aic31.h" #include "edma.h" #include "psc.h" #include <math.h> #include <string.h> /****************************************************************************** ** INTERNAL MACRO DEFINITIONS ******************************************************************************/ /* ** Values which are configurable */ /* Slot size to send/receive data */ #define SLOT_SIZE (16u) /* Word size to send/receive data. Word size <= Slot size */ #define WORD_SIZE (16u) /* Sampling Rate which will be used by both transmit and receive sections */ #define SAMPLING_RATE (48000u) /* Number of channels, L & R */ #define NUM_I2S_CHANNELS (2u) /* Number of samples to be used per audio buffer */ #define NUM_SAMPLES_PER_AUDIO_BUF (24000u) /* Number of buffers used per tx/rx */ #define NUM_BUF (3u) /* Number of linked parameter set used per tx/rx */ #define NUM_PAR (2u) /* Specify where the parameter set starting is */ #define PAR_ID_START (40u) /* Number of samples in loop buffer */ #define NUM_SAMPLES_LOOP_BUF (10u) /* AIC3106 codec address */ #define I2C_SLAVE_CODEC_AIC31 (0x18u) /* Interrupt channels to map in AINTC */ #define INT_CHANNEL_I2C (2u) #define INT_CHANNEL_MCASP (2u) #define INT_CHANNEL_EDMACC (2u) /* McASP Serializer for Receive */ #define MCASP_XSER_RX (14u) /* McASP Serializer for Transmit */ #define MCASP_XSER_TX (13u) /* ** Below Macros are calculated based on the above inputs */ #define NUM_TX_SERIALIZERS ((NUM_I2S_CHANNELS >> 1) \ + (NUM_I2S_CHANNELS & 0x01)) #define NUM_RX_SERIALIZERS ((NUM_I2S_CHANNELS >> 1) \ + (NUM_I2S_CHANNELS & 0x01)) #define I2S_SLOTS ((1 << NUM_I2S_CHANNELS) - 1) #define BYTES_PER_SAMPLE ((WORD_SIZE >> 3) \ * NUM_I2S_CHANNELS) #define AUDIO_BUF_SIZE (NUM_SAMPLES_PER_AUDIO_BUF \ * BYTES_PER_SAMPLE) #define TX_DMA_INT_ENABLE (EDMA3CC_OPT_TCC_SET(1) | (1 \ << EDMA3CC_OPT_TCINTEN_SHIFT)) #define RX_DMA_INT_ENABLE (EDMA3CC_OPT_TCC_SET(0) | (1 \ << EDMA3CC_OPT_TCINTEN_SHIFT)) #define PAR_RX_START (PAR_ID_START) #define PAR_TX_START (PAR_RX_START + NUM_PAR) /* ** Definitions which are not configurable */ #define SIZE_PARAMSET (32u) #define OPT_FIFO_WIDTH (0x02 << 8u) /****************************************************************************** ** INTERNAL FUNCTION PROTOTYPES ******************************************************************************/ static void McASPErrorIsr(void); static void McASPErrorIntSetup(void); static void AIC31I2SConfigure(void); static void McASPI2SConfigure(void); static void McASPTxDMAComplHandler(void); static void McASPRxDMAComplHandler(void); static void EDMA3CCComplIsr(void); static void I2SDataTxRxActivate(void); static void I2SDMAParamInit(void); static void ParamTxLoopJobSet(unsigned short parId); static void BufferTxDMAActivate(unsigned int txBuf, unsigned short numSamples, unsigned short parToUpdate, unsigned short linkAddr); static void BufferRxDMAActivate(unsigned int rxBuf, unsigned short parId, unsigned short parLink); /****************************************************************************** ** INTERNAL VARIABLE DEFINITIONS ******************************************************************************/ static unsigned char loopBuf[NUM_SAMPLES_LOOP_BUF * BYTES_PER_SAMPLE] = {0}; /* ** Transmit buffers. If any new buffer is to be added, define it here and ** update the NUM_BUF. */ signed char txBuf0[AUDIO_BUF_SIZE]; signed char txBuf1[AUDIO_BUF_SIZE]; signed char txBuf2[AUDIO_BUF_SIZE]; /* ** Receive buffers. If any new buffer is to be added, define it here and ** update the NUM_BUF. */ signed char rxBuf0[AUDIO_BUF_SIZE]; signed char rxBuf1[AUDIO_BUF_SIZE]; signed char rxBuf2[AUDIO_BUF_SIZE]; /* ** Next buffer to receive data. The data will be received in this buffer. */ static volatile unsigned int nxtBufToRcv = 0; /* ** The RX buffer which filled latest. */ static volatile unsigned int lastFullRxBuf = 0; /* ** The PX buffer which filled latest. */ static volatile unsigned int lastFullPxBuf = NUM_BUF - 1; /* ** The offset of the paRAM ID, from the starting of the paRAM set. */ static volatile unsigned short parOffRcvd = 0; /* ** The offset of the paRAM ID sent, from starting of the paRAM set. */ static volatile unsigned short parOffSent = 0; /* ** The offset of the paRAM ID to be sent next, from starting of the paRAM set. */ static volatile unsigned short parOffTxToSend = 0; /* ** The transmit buffer which was sent last. */ static volatile unsigned int lastSentTxBuf = NUM_BUF - 1; /****************************************************************************** ** INTERNAL CONSTATNT DEFINITIONS ******************************************************************************/ /* Array of receive buffer pointers */ signed int rxBufPtr[NUM_BUF] = { (signed int) rxBuf0, (signed int) rxBuf1, (signed int) rxBuf2 }; /* Array of transmit buffer pointers */ signed int txBufPtr[NUM_BUF] = { (signed int) txBuf0, (signed int) txBuf1, (signed int) txBuf2 }; /* ** Default paRAM for Transmit section. This will be transmitting from ** a loop buffer. */ static struct EDMA3CCPaRAMEntry const txDefaultPar = { (unsigned int)(EDMA3CC_OPT_DAM | (0x02 << 8u)), /* Opt field */ (unsigned int)loopBuf, /* source address */ (unsigned short)(BYTES_PER_SAMPLE), /* aCnt */ (unsigned short)(NUM_SAMPLES_LOOP_BUF), /* bCnt */ (unsigned int) SOC_MCASP_0_DATA_REGS, /* dest address */ (short) (BYTES_PER_SAMPLE), /* source bIdx */ (short)(0), /* dest bIdx */ (unsigned short)(PAR_TX_START * SIZE_PARAMSET), /* link address */ (unsigned short)(0), /* bCnt reload value */ (short)(0), /* source cIdx */ (short)(0), /* dest cIdx */ (unsigned short)1 /* cCnt */ }; /* ** Default paRAM for Receive section. */ static struct EDMA3CCPaRAMEntry const rxDefaultPar = { (unsigned int)(EDMA3CC_OPT_SAM | (0x02 << 8u)), /* Opt field */ (unsigned int)SOC_MCASP_0_DATA_REGS, /* source address */ (unsigned short)(BYTES_PER_SAMPLE), /* aCnt */ (unsigned short)(1), /* bCnt */ (unsigned int)rxBuf0, /* dest address */ (short) (0), /* source bIdx */ (short)(BYTES_PER_SAMPLE), /* dest bIdx */ (unsigned short)(PAR_RX_START * SIZE_PARAMSET), /* link address */ (unsigned short)(0), /* bCnt reload value */ (short)(0), /* source cIdx */ (short)(0), /* dest cIdx */ (unsigned short)1 /* cCnt */ }; /****************************************************************************** ** FUNCTION DEFINITIONS ******************************************************************************/ /* ** Assigns loop job for a parameter set */ static void ParamTxLoopJobSet(unsigned short parId) { EDMA3CCPaRAMEntry paramSet; memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET - 2); /* link the paRAM to itself */ paramSet.linkAddr = parId * SIZE_PARAMSET; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** Initializes the DMA parameters. ** The RX basic paRAM set(channel) is 0 and TX basic paRAM set (channel) is 1. ** ** The RX paRAM set 0 will be initialized to receive data in the rx buffer 0. ** The transfer completion interrupt will not be enabled for paRAM set 0; ** paRAM set 0 will be linked to linked paRAM set starting (PAR_RX_START) of RX. ** and further reception only happens via linked paRAM set. ** For example, if the PAR_RX_START value is 40, and the number of paRAMS is 2, ** reception paRAM set linking will be initialized as 0-->40-->41-->40 ** ** The TX paRAM sets will be initialized to transmit from the loop buffer. ** The size of the loop buffer can be configured. ** The transfer completion interrupt will not be enabled for paRAM set 1; ** paRAM set 1 will be linked to linked paRAM set starting (PAR_TX_START) of TX. ** All other paRAM sets will be linked to itself. ** and further transmission only happens via linked paRAM set. ** For example, if the PAR_RX_START value is 42, and the number of paRAMS is 2, ** So transmission paRAM set linking will be initialized as 1-->42-->42, 43->43. */ static void I2SDMAParamInit(void) { EDMA3CCPaRAMEntry paramSet; int idx; /* Initialize the 0th paRAM set for receive */ memcpy(¶mSet, &rxDefaultPar, SIZE_PARAMSET - 2); EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX, ¶mSet); /* further paramsets, enable interrupt */ paramSet.opt |= RX_DMA_INT_ENABLE; for(idx = 0 ; idx < NUM_PAR; idx++) { paramSet.destAddr = rxBufPtr[idx]; paramSet.linkAddr = (PAR_RX_START + ((idx + 1) % NUM_PAR)) * (SIZE_PARAMSET); paramSet.bCnt = NUM_SAMPLES_PER_AUDIO_BUF; /* ** for the first linked paRAM set, start receiving the second ** sample only since the first sample is already received in ** rx buffer 0 itself. */ if( 0 == idx) { paramSet.destAddr += BYTES_PER_SAMPLE; paramSet.bCnt -= BYTES_PER_SAMPLE; } EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, (PAR_RX_START + idx), ¶mSet); } /* Initialize the required variables for reception */ nxtBufToRcv = idx % NUM_BUF; lastFullRxBuf = NUM_BUF - 1; parOffRcvd = 0; /* Initialize the 1st paRAM set for transmit */ memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET); EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX, ¶mSet); /* rest of the params, enable loop job */ for(idx = 0 ; idx < NUM_PAR; idx++) { ParamTxLoopJobSet(PAR_TX_START + idx); } /* Initialize the variables for transmit */ parOffSent = 0; lastSentTxBuf = NUM_BUF - 1; } /* ** Function to configure the codec for I2S mode */ static void AIC31I2SConfigure(void) { volatile unsigned int delay = 0xFFF; AIC31Reset(SOC_I2C_0_REGS); while(delay--); /* Configure the data format and sampling rate */ AIC31DataConfig(SOC_I2C_0_REGS, AIC31_DATATYPE_I2S, SLOT_SIZE, 0); AIC31SampleRateConfig(SOC_I2C_0_REGS, AIC31_MODE_BOTH, SAMPLING_RATE); /* Initialize both ADC and DAC */ AIC31ADCInit(SOC_I2C_0_REGS); AIC31DACInit(SOC_I2C_0_REGS); } /* ** Configures the McASP Transmit Section in I2S mode. */ static void McASPI2SConfigure(void) { McASPRxReset(SOC_MCASP_0_CTRL_REGS); McASPTxReset(SOC_MCASP_0_CTRL_REGS); /* Enable the FIFOs for DMA transfer */ McASPReadFifoEnable(SOC_MCASP_0_FIFO_REGS, 1, 1); McASPWriteFifoEnable(SOC_MCASP_0_FIFO_REGS, 1, 1); /* Set I2S format in the transmitter/receiver format units */ McASPRxFmtI2SSet(SOC_MCASP_0_CTRL_REGS, WORD_SIZE, SLOT_SIZE, MCASP_RX_MODE_DMA); McASPTxFmtI2SSet(SOC_MCASP_0_CTRL_REGS, WORD_SIZE, SLOT_SIZE, MCASP_TX_MODE_DMA); /* Configure the frame sync. I2S shall work in TDM format with 2 slots */ McASPRxFrameSyncCfg(SOC_MCASP_0_CTRL_REGS, 2, MCASP_RX_FS_WIDTH_WORD, MCASP_RX_FS_EXT_BEGIN_ON_FALL_EDGE); McASPTxFrameSyncCfg(SOC_MCASP_0_CTRL_REGS, 2, MCASP_TX_FS_WIDTH_WORD, MCASP_TX_FS_EXT_BEGIN_ON_RIS_EDGE); /* configure the clock for receiver */ McASPRxClkCfg(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_EXTERNAL, 0, 0); McASPRxClkPolaritySet(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_POL_RIS_EDGE); McASPRxClkCheckConfig(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLKCHCK_DIV32, 0x00, 0xFF); /* configure the clock for transmitter */ McASPTxClkCfg(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_EXTERNAL, 0, 0); McASPTxClkPolaritySet(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_POL_FALL_EDGE); McASPTxClkCheckConfig(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLKCHCK_DIV32, 0x00, 0xFF); /* Enable synchronization of RX and TX sections */ McASPTxRxClkSyncEnable(SOC_MCASP_0_CTRL_REGS); /* Enable the transmitter/receiver slots. I2S uses 2 slots */ McASPRxTimeSlotSet(SOC_MCASP_0_CTRL_REGS, I2S_SLOTS); McASPTxTimeSlotSet(SOC_MCASP_0_CTRL_REGS, I2S_SLOTS); /* ** Set the serializers, Currently only one serializer is set as ** transmitter and one serializer as receiver. */ McASPSerializerRxSet(SOC_MCASP_0_CTRL_REGS, MCASP_XSER_RX); McASPSerializerTxSet(SOC_MCASP_0_CTRL_REGS, MCASP_XSER_TX); /* ** Configure the McASP pins ** Input - Frame Sync, Clock and Serializer Rx ** Output - Serializer Tx is connected to the input of the codec */ McASPPinMcASPSet(SOC_MCASP_0_CTRL_REGS, 0xFFFFFFFF); McASPPinDirOutputSet(SOC_MCASP_0_CTRL_REGS, MCASP_PIN_AXR(MCASP_XSER_TX)); McASPPinDirInputSet(SOC_MCASP_0_CTRL_REGS, MCASP_PIN_AFSX | MCASP_PIN_ACLKX | MCASP_PIN_AFSR | MCASP_PIN_ACLKR | MCASP_PIN_AXR(MCASP_XSER_RX)); /* Enable error interrupts for McASP */ McASPTxIntEnable(SOC_MCASP_0_CTRL_REGS, MCASP_TX_DMAERROR | MCASP_TX_CLKFAIL | MCASP_TX_SYNCERROR | MCASP_TX_UNDERRUN); McASPRxIntEnable(SOC_MCASP_0_CTRL_REGS, MCASP_RX_DMAERROR | MCASP_RX_CLKFAIL | MCASP_RX_SYNCERROR | MCASP_RX_OVERRUN); } /* ** Sets up the interrupts for EDMA in AINTC */ static void EDMA3IntSetup(void) { #ifdef _TMS320C6X IntRegister(C674X_MASK_INT5, EDMA3CCComplIsr); IntEventMap(C674X_MASK_INT5, SYS_INT_EDMA3_0_CC0_INT1); IntEnable(C674X_MASK_INT5); #else IntRegister(SYS_INT_CCINT0, EDMA3CCComplIsr); IntChannelSet(SYS_INT_CCINT0, INT_CHANNEL_EDMACC); IntSystemEnable(SYS_INT_CCINT0); #endif } /* ** Sets up the error interrupts for McASP in AINTC */ static void McASPErrorIntSetup(void) { #ifdef _TMS320C6X IntRegister(C674X_MASK_INT6, McASPErrorIsr); IntEventMap(C674X_MASK_INT6, SYS_INT_MCASP0_INT); IntEnable(C674X_MASK_INT6); #else /* Register the error ISR for McASP */ IntRegister(SYS_INT_MCASPINT, McASPErrorIsr); IntChannelSet(SYS_INT_MCASPINT, INT_CHANNEL_MCASP); IntSystemEnable(SYS_INT_MCASPINT); #endif } /* ** Activates the data transmission/reception ** The DMA parameters shall be ready before calling this function. */ static void I2SDataTxRxActivate(void) { /* Start the clocks */ McASPRxClkStart(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_EXTERNAL); McASPTxClkStart(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_EXTERNAL); /* Enable EDMA for the transfer */ EDMA3EnableTransfer(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX, EDMA3_TRIG_MODE_EVENT); EDMA3EnableTransfer(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX, EDMA3_TRIG_MODE_EVENT); /* Activate the serializers */ McASPRxSerActivate(SOC_MCASP_0_CTRL_REGS); McASPTxSerActivate(SOC_MCASP_0_CTRL_REGS); /* make sure that the XDATA bit is cleared to zero */ while(McASPTxStatusGet(SOC_MCASP_0_CTRL_REGS) & MCASP_TX_STAT_DATAREADY); /* Activate the state machines */ McASPRxEnable(SOC_MCASP_0_CTRL_REGS); McASPTxEnable(SOC_MCASP_0_CTRL_REGS); } /* ** Activates the DMA transfer for a parameterset from the given buffer. */ void BufferTxDMAActivate(unsigned int txBuf, unsigned short numSamples, unsigned short parId, unsigned short linkPar) { EDMA3CCPaRAMEntry paramSet; /* Copy the default paramset */ memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET - 2); /* Enable completion interrupt */ paramSet.opt |= TX_DMA_INT_ENABLE; paramSet.srcAddr = txBufPtr[txBuf]; paramSet.linkAddr = linkPar * SIZE_PARAMSET; paramSet.bCnt = numSamples; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** The main function. Application starts here. */ int i, x = 0, y = 0, w = 0, z = 0, v = 0; signed int Echo1[2 * NUM_SAMPLES_PER_AUDIO_BUF] = {0}; // all elements 0 signed int Echo2[2 * NUM_SAMPLES_PER_AUDIO_BUF] = {0}; // all elements 0 signed int Echo3[2 * NUM_SAMPLES_PER_AUDIO_BUF] = {0}; // all elements 0 signed int Echo4[2 * NUM_SAMPLES_PER_AUDIO_BUF] = {0}; // all elements 0 int main(void) { printf("Audio Buf (bytes): %u\n", AUDIO_BUF_SIZE); unsigned short parToSend; unsigned short parToLink; /* Set up pin mux for I2C module 0 */ I2CPinMuxSetup(0); McASPPinMuxSetup(); /* Power up the McASP module */ PSCModuleControl(SOC_PSC_1_REGS, HW_PSC_MCASP0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); /* Power up EDMA3CC_0 and EDMA3TC_0 */ PSCModuleControl(SOC_PSC_0_REGS, HW_PSC_CC0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); PSCModuleControl(SOC_PSC_0_REGS, HW_PSC_TC0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); #ifdef _TMS320C6X // Initialize the DSP interrupt controller IntDSPINTCInit(); #else /* Initialize the ARM Interrupt Controller.*/ IntAINTCInit(); #endif /* Initialize the I2C 0 interface for the codec AIC31 */ I2CCodecIfInit(SOC_I2C_0_REGS, INT_CHANNEL_I2C, I2C_SLAVE_CODEC_AIC31); EDMA3Init(SOC_EDMA30CC_0_REGS, 0); EDMA3IntSetup(); McASPErrorIntSetup(); #ifdef _TMS320C6X IntGlobalEnable(); #else /* Enable the interrupts generation at global level */ IntMasterIRQEnable(); IntGlobalEnable(); IntIRQEnable(); #endif /* ** Request EDMA channels. Channel 0 is used for reception and ** Channel 1 is used for transmission */ EDMA3RequestChannel(SOC_EDMA30CC_0_REGS, EDMA3_CHANNEL_TYPE_DMA, EDMA3_CHA_MCASP0_TX, EDMA3_CHA_MCASP0_TX, 0); EDMA3RequestChannel(SOC_EDMA30CC_0_REGS, EDMA3_CHANNEL_TYPE_DMA, EDMA3_CHA_MCASP0_RX, EDMA3_CHA_MCASP0_RX, 0); /* Initialize the DMA parameters */ I2SDMAParamInit(); /* Configure the Codec for I2S mode */ AIC31I2SConfigure(); /* Configure the McASP for I2S */ McASPI2SConfigure(); /* Activate the audio transmission and reception */ I2SDataTxRxActivate(); /* ** Loop forever. if a new buffer is received, the lastFullRxBuf will be ** updated in the rx completion ISR. if it is not the lastSentTxBuf, ** buffer is to be sent. This has to be mapped to proper paRAM set. */ while(1) { Echo1[0] = 0; Echo2[0] = 0; Echo3[0] = 0; Echo4[0] = 0; Echo1[NUM_SAMPLES_PER_AUDIO_BUF] = 0; Echo2[NUM_SAMPLES_PER_AUDIO_BUF] = 0; Echo3[NUM_SAMPLES_PER_AUDIO_BUF] = 0; Echo4[NUM_SAMPLES_PER_AUDIO_BUF] = 0; if(lastFullRxBuf != lastSentTxBuf) { /* ** Start the transmission from the link paramset. The param set ** 1 will be linked to param set at PAR_TX_START. So do not ** update paRAM set1. */ parToSend = PAR_TX_START + (parOffTxToSend % NUM_PAR); parOffTxToSend = (parOffTxToSend + 1) % NUM_PAR; parToLink = PAR_TX_START + parOffTxToSend; lastSentTxBuf = (lastSentTxBuf + 1) % NUM_BUF; for(i = 4; i <= AUDIO_BUF_SIZE; i += 4) // AUDIO_BUF_SIZE = 96000 // NUM_SAMPLES_PER_AUDIO_BUF = 24000 { z = 0; if (lastSentTxBuf == 0) { z = rxBuf0[i] + (rxBuf0[i+1] << 8); Echo4[(i/4)] = Echo3[(i/4)]; Echo3[(i/4)] = Echo2[(i/4)]; Echo2[(i/4)] = Echo1[(i/4)]; Echo1[(i/4)] = z; v = z/5 + Echo1[(i/4)+1]/5 + Echo2[(i/4)+1]/5 + Echo3[(i/4)+1]/5 + Echo4[(i/4)+1]/5; rxBuf0[i-4] = v; rxBuf0[i-3] = v >> 8; } else if (lastSentTxBuf == 1) { z = rxBuf0[i] + (rxBuf0[i+1] << 8); Echo4[(i/4)] = Echo3[(i/4)]; Echo3[(i/4)] = Echo2[(i/4)]; Echo2[(i/4)] = Echo1[(i/4)]; Echo1[(i/4)] = z; v = z/5 + Echo1[(i/4)+1]/5 + Echo2[(i/4)+1]/5 + Echo3[(i/4)+1]/5 + Echo4[(i/4)+1]/5; rxBuf1[i-4] = v; rxBuf1[i-3] = v >> 8; } else if (lastSentTxBuf == 2) { z = rxBuf0[i] + (rxBuf0[i+1] << 8); Echo4[(i/4)] = Echo3[(i/4)]; Echo3[(i/4)] = Echo2[(i/4)]; Echo2[(i/4)] = Echo1[(i/4)]; Echo1[(i/4)] = z; v = z/5 + Echo1[(i/4)+1]/5 + Echo2[(i/4)+1]/5 + Echo3[(i/4)+1]/5 + Echo4[(i/4)+1]/5; rxBuf2[i-4] = v; rxBuf2[i-3] = v >> 8; } } /* Copy the buffer */ memcpy((void *)txBufPtr[lastSentTxBuf], (void *)rxBufPtr[lastFullRxBuf], AUDIO_BUF_SIZE); /* ** Send the buffer by setting the DMA params accordingly. ** Here the buffer to send and number of samples are passed as ** parameters. This is important, if only transmit section ** is to be used. */ BufferTxDMAActivate(lastSentTxBuf, NUM_SAMPLES_PER_AUDIO_BUF, (unsigned short)parToSend, (unsigned short)parToLink); } } } /* ** Activates the DMA transfer for a parameter set from the given buffer. */ static void BufferRxDMAActivate(unsigned int rxBuf, unsigned short parId, unsigned short parLink) { EDMA3CCPaRAMEntry paramSet; /* Copy the default paramset */ memcpy(¶mSet, &rxDefaultPar, SIZE_PARAMSET - 2); /* Enable completion interrupt */ paramSet.opt |= RX_DMA_INT_ENABLE; paramSet.destAddr = rxBufPtr[rxBuf]; paramSet.bCnt = NUM_SAMPLES_PER_AUDIO_BUF; paramSet.linkAddr = parLink * SIZE_PARAMSET ; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** This function will be called once receive DMA is completed */ static void McASPRxDMAComplHandler(void) { unsigned short nxtParToUpdate; /* ** Update lastFullRxBuf to indicate a new buffer reception ** is completed. */ lastFullRxBuf = (lastFullRxBuf + 1) % NUM_BUF; nxtParToUpdate = PAR_RX_START + parOffRcvd; parOffRcvd = (parOffRcvd + 1) % NUM_PAR; /* ** Update the DMA parameters for the received buffer to receive ** further data in proper buffer */ BufferRxDMAActivate(nxtBufToRcv, nxtParToUpdate, PAR_RX_START + parOffRcvd); /* update the next buffer to receive data */ nxtBufToRcv = (nxtBufToRcv + 1) % NUM_BUF; } /* ** This function will be called once transmit DMA is completed */ static void McASPTxDMAComplHandler(void) { ParamTxLoopJobSet((unsigned short)(PAR_TX_START + parOffSent)); parOffSent = (parOffSent + 1) % NUM_PAR; } /* ** EDMA transfer completion ISR */ static void EDMA3CCComplIsr(void) { #ifdef _TMS320C6X IntEventClear(SYS_INT_EDMA3_0_CC0_INT1); #else IntSystemStatusClear(SYS_INT_CCINT0); #endif /* Check if receive DMA completed */ if(EDMA3GetIntrStatus(SOC_EDMA30CC_0_REGS) & (1 << EDMA3_CHA_MCASP0_RX)) { /* Clear the interrupt status for the 0th channel */ EDMA3ClrIntr(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX); McASPRxDMAComplHandler(); } /* Check if transmit DMA completed */ if(EDMA3GetIntrStatus(SOC_EDMA30CC_0_REGS) & (1 << EDMA3_CHA_MCASP0_TX)) { /* Clear the interrupt status for the first channel */ EDMA3ClrIntr(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX); McASPTxDMAComplHandler(); } } /* ** Error ISR for McASP */ static void McASPErrorIsr(void) { #ifdef _TMS320C6X IntEventClear(SYS_INT_MCASP0_INT); #else IntSystemStatusClear(SYS_INT_MCASPINT); #endif ; /* Perform any error handling here.*/ } /***************************** End Of File ***********************************/